INSTITUTO DE FÍSCA DA UFF TERMODINÂMIA 04 Dezembro 2012 Lista 3

- 1) Considere a atmosfera como um gás ideal de peso molecular μ em um campo gravitacional uniforme. Seja g a aceleração da gravidade.
 - (a) Se z representa a altura sobre o nível do mar, demostrar que la variação da pressão atmosférica é dada por

$$dp/p = -\mu g/RT dz$$

onde T é a temperatura a altura z..

(b) Se a diminuição da pressão em (a) é uma expansão adiabática, mostre que

$$dp/p = \gamma/(\gamma-1) dT/T$$

- (c) A partir de (a) e (b) calcular dT/dz em graus por kilometro, suponha $\gamma = 1.4$ (N₂).
- (d) Um uma atmosfera isotérmica a temperatura T, expresse a pressão p a altura z, em função da pressão p₀ ao nível do mar.
- (e) Se a pressão e temperatura ao nível do mar são p_{0 y T0}, respectivamente e atmosfera ser considerada como adiabática, como no item (b), determine a pressão p a altura z.
- 2) Em um intervalo de temperatura na proximidade da temperatura absoluta T, a força tensora de um vareta de plástico esticada está relacionada com o seu comprimento pela expressão

$$F = a T^2 (L - L_0)$$

Onde a e L_0 são contantes positivas, L_0 é o comprimento da vareta sem esticar. Para $L = L_0$ a capacidade calorífica C_L da vareta (medida a comprimento constante) e dada por $C_L = bT$, onde b é uma constante

- (a) Escrever a relação termodinâmica fundamental para este sistema, expressando dS em função de dE e dL., isto é, $(\partial E/\partial T)_L$ e $(\partial E/\partial L)_T$.
- (b) A entropia da vareta S(T,L) é uma função de T e L. Determine $(\partial S/\partial L)_{T}$.
- (c) Partindo de T_i e L = L_i se exerce tração sobre a vareta, termicamente isolada , até que alcance um comprimento L_f . Qual a temperatura final T_f ?
- (d) Calcule a capacidade calorífica $C_L(L,T)$ da vareta quando seu comprimento é L. e não L_0 .
- (e) Escreva explicitamente S = S(T, L)
- 2) A equação de estado de um gás pode ser escrita como

$$P = n kT (1 + B_2 n)$$

Onde p é a pressão eT a temperatura absoluta do gás, n = N/V é o número de moléculas por unidade de volume e $B_2 = B_2$ (T) é o segundo coeficiente do virial. Determine explicitamente para este gás, como a energia interna E varia com T e V, isto é:

- (a) $(\partial E/\partial T)_V$ e (b) $(\partial E/\partial V)_T$
- (b) Qual a variação da energia interna do gás quando os parâmetros T_i e $P_i\,$ passam a ser T_f e $V_f\,?$

Determine como a entropia S varia com T e V, isto é:

- (c) $(\partial S/\partial T)_V$ e (d) $(\partial S/\partial V)_T$,
- (e) Qual a variação da entropia do gás quando os parâmetros T_i e V_i passam a ser T_f e V_f ?